Orchestration Patterns | CONFIDENTIAL

DATA FACTORY
ORCHESTRATION PATTERNS

Dependencies • Scheduling • Cross-Workspace • Event-Driven

Version 1.0 | January 2026

Table of Contents

1. Orchestration Fundamentals
Orchestration coordinates the execution of multiple pipelines, notebooks, and dataflows to implement end-to-end data workflows. Effective orchestration ensures reliable, maintainable, and observable data processing.
1.1 Orchestration Components
	Component
	Purpose
	Examples

	Master Pipeline
	Top-level orchestration
	Daily ETL, End-to-End

	Worker Pipeline
	Individual processing tasks
	Bronze load, Silver transform

	Triggers
	Automation mechanisms
	Schedule, Event, Manual

	Parameters
	Runtime configuration
	Dates, sources, flags

	Dependencies
	Execution ordering
	Success, Failure, Completed

1.2 Orchestration Principles
1. Single Responsibility: Each pipeline does one thing well
1. Idempotency: Re-running produces same result
1. Observability: Comprehensive logging and monitoring
1. Recoverability: Ability to restart from failure point
1. Testability: Pipelines can be tested independently

2. Master-Worker Pattern
The master-worker pattern separates orchestration logic from processing logic for modularity and reusability.
2.1 Pattern Structure
Master Pipeline (pl_master_daily_etl)
├── Initialize Variables
├── Validate Prerequisites
│
├── Execute Bronze Layer
│ └── Invoke pl_bronze_ingest
│
├── Execute Silver Layer
│ └── Invoke pl_silver_transform
│
├── Execute Gold Layer
│ └── Invoke pl_gold_aggregate
│
├── Notify Success
└── Handle Failure (conditional)
2.2 Parameter Passing
Pass parameters from master to worker pipelines:
// Invoke Pipeline activity
pipelineName: "pl_bronze_ingest"
parameters: {
 process_date: @pipeline().parameters.process_date
 source_name: @item().source_name
 is_full_load: @pipeline().parameters.is_full_load
}
2.3 Capturing Worker Output
// Get output from invoked pipeline
@activity('Invoke_Bronze').output.pipelineReturnValue.row_count

// In worker pipeline, set return value
Set Variable: pipeline_return = { "row_count": 12345 }
2.4 Benefits
1. Modular design enables reuse across orchestrations
1. Workers can be tested independently
1. Clear separation of concerns
1. Easier troubleshooting and maintenance
1. Parallel execution of independent workers

3. Dependency Management
Manage execution dependencies between activities and pipelines to ensure correct ordering and error handling.
3.1 Activity Dependencies
	Dependency
	Behavior

	Succeeded
	Next activity runs only if previous completed successfully

	Failed
	Next activity runs only if previous failed

	Completed
	Next activity runs regardless of success/failure

	Skipped
	Next activity runs only if previous was skipped

3.2 Error Handling Pattern
Pipeline Structure:
│
├── Main Processing
│ ├── [Activity 1] ──Success──> [Activity 2]
│ │
│ └── [Activity 2] ──Success──> [Success Handler]
│ └─Failure──> [Error Handler]
│
├── Error Handler (on failure)
│ ├── Log Error Details
│ ├── Send Alert
│ └── Cleanup
│
└── Success Handler
 └── Update Status
3.3 Cross-Pipeline Dependencies
Manage dependencies between pipelines:
Sequential Execution
Master Pipeline:
 Bronze Pipeline ──Success──> Silver Pipeline ──Success──> Gold Pipeline

Parallel then Sequential
Master Pipeline:
 ├── Source A Pipeline ─┐
 ├── Source B Pipeline ─┼──All Success──> Transform Pipeline
 └── Source C Pipeline ─┘

4. Scheduling Patterns
4.1 Schedule Trigger
Execute pipelines at fixed intervals:
// Daily at 2 AM UTC
Schedule: {
 frequency: "Day"
 interval: 1
 startTime: "2024-01-01T02:00:00Z"
 timeZone: "UTC"
}
4.2 Tumbling Window
Process data in fixed time slices with built-in dependency management:
Tumbling Window: {
 frequency: "Hour"
 interval: 1
 startTime: "2024-01-01T00:00:00Z"
 delay: "00:15:00" // Wait 15 min for data arrival
 maxConcurrency: 10
 retryPolicy: {
 count: 3
 intervalInSeconds: 300
 }
}
Tumbling Window Parameters
// Available in pipeline
@trigger().outputs.windowStartTime
@trigger().outputs.windowEndTime
@trigger().startTime
4.3 Chained Schedules
Chain dependent pipelines using triggers:
1. Pipeline A completes → Triggers Pipeline B
1. Use storage event triggers for file-based dependencies
1. Consider tumbling window for time-slice processing

5. Event-Driven Patterns
5.1 Storage Event Trigger
Trigger pipeline when files arrive:
Storage Event Trigger: {
 scope: "/subscriptions/.../storageAccounts/storage"
 events: ["Microsoft.Storage.BlobCreated"]
 blobPathBeginsWith: "/container/landing/claims/"
 blobPathEndsWith: ".csv"
}
Event Parameters
@triggerBody().fileName
@triggerBody().folderPath
@trigger().startTime
5.2 Custom Events
Trigger from custom application events:
Custom Event Trigger: {
 scope: "/subscriptions/.../eventGridTopics/topic"
 events: [{
 eventType: "DataReady"
 subject: "claims/*"
 }]
}
5.3 Event-Driven Best Practices
1. Implement idempotency for duplicate events
1. Handle out-of-order event delivery
1. Set up dead-letter queues for failed events
1. Log event metadata for troubleshooting
1. Consider event batching for high-volume scenarios

6. Cross-Workspace Orchestration
6.1 Workspace Patterns
	Pattern
	Description
	Use Case

	Centralized
	Single orchestration workspace
	Enterprise data platform

	Federated
	Domain-owned orchestration
	Data mesh

	Hub-Spoke
	Central hub coordinates spokes
	Multi-domain with shared

6.2 Cross-Workspace Invocation
Call pipelines in other workspaces using Web Activity:
Web Activity: {
 url: "https://api.fabric.microsoft.com/v1/workspaces/{wsId}/items/{itemId}/jobs/instances?jobType=Pipeline"
 method: "POST"
 authentication: "MSI"
 body: {
 "executionData": {
 "parameters": { "process_date": "2024-01-15" }
 }
 }
}
6.3 Security Considerations
1. Use managed identity for authentication
1. Grant minimum required permissions
1. Audit cross-workspace calls
1. Consider network isolation requirements

7. Best Practices
7.1 Design Guidelines
1. Keep master pipelines thin (orchestration only)
1. Implement comprehensive error handling
1. Use descriptive naming conventions
1. Document pipeline dependencies
1. Version control all pipeline definitions
1. Test pipelines in isolation before integration
7.2 Naming Conventions
	Type
	Convention
	Example

	Master Pipeline
	pl_master_[process]
	pl_master_daily_etl

	Worker Pipeline
	pl_[layer]_[entity]
	pl_bronze_claims

	Schedule Trigger
	tr_sch_[frequency]
	tr_sch_daily_2am

	Event Trigger
	tr_evt_[source]
	tr_evt_claims_file

7.3 Reliability
1. Configure appropriate retry policies
1. Implement checkpoint/restart capability
1. Design for idempotent execution
1. Monitor trigger and pipeline health
1. Set up alerting for failures

Appendix: Document Information
	Document Title
	Orchestration Patterns

	Version
	1.0

	Last Updated
	January 2026

Page of
